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Symmetric nearest-particle systems are certain spin systems on {0, 1 } z in which 
the flip rate is a function of the distances to the nearest particle of different type 
to the left and right. The process differs from the ordinary nearest-particle 
system in that the rates are preserved if zeros and ones are interchanged. The 
only reversible measure for the symmetric nearest-particle system is a "renewal- 
type" measure (the natural analog to the nonsymmetric case). Also as in the 
nonsymmetric case, reversibility only occurs when the rates are of a specific 
form. By imposing additional conditions on the rates it can be shown that the 
reversible measure is the only translation-invariant, invariant measure which 
concentrates on configurations having infinitely many zeros and ones to either 
side of the origin. This can be used to prove that for a large class of translation- 
invariant initial distributions, weak limits are reversible measures. Then we can 
conclude that the process is convergent for several examples of initial distri- 
butions. 

KEY WORDS: Nearest-particle systems; symmetric particle system; reversible 
measures; symmetric renewal measure. 

1. I N T R O D U C T I O N  

In  1977 F r a n k  Sp i t ze r  i n t r o d u c e d  the  n e a r e s t - p a r t i c l e  sys tem,  w h i c h  is a n  

in f in i t e - r ange  g e n e r a l i z a t i o n  o f  the  o n e - d i m e n s i o n a l  c o n t a c t  process .  T h e  

c o n t a c t  p roce s s  h a d  b e e n  i n t r o d u c e d  b y  T e d  H a r r i s  in  1974 a n d  b e c a m e  t he  

sub jec t  of  e x h a u s t i v e  s tudy.  B o t h  a re  e x a m p l e s  o f  o n e - d i m e n s i o n a l  sp in  

sys tems,  c o n t i n u o u s - t i m e  M a r k o v  p rocesses  r/, o n  { 0, 1 } z w h o s e  e v o l u t i o n  

is d e s c r i b e d  b y  the  r a t e s  c (x ,~ ) ,  x ~ Z ,  w i t h  w h i c h  r / (x)  flips to  1 - t / ( x ) .  

T h e  c o n t a c t  p r o c e s s  a n d  th is  n e a r e s t - p a r t i c l e  sys t em h a v e  ra t e s  w h i c h  
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are not symmetric in zeros and ones; the rate with which a site flips is 
dependent on the local configuration of ones. When q ( x ) =  0 the rates for 
the nearest-particle system are a function of the distance to the nearest 1 
to the left and right of x. When q ( x ) =  1 the (death) rates for the typical 
nearest-particle system are as they are for the contact process, identically 
one. 

As with the contact process, one of the main questions we are inter- 
ested in answering about the nonsymmetric nearest-particle system is when 
does the process survive and when does it die out. This involves analyzing 
the invariant measures. Studying a subclass of the invariant measures, the 
reversible measures, proves to be quite helpful. An invariant measure for a 
Markov process is reversible if the stationary process obtained by using it 
as the initial distribution is symmetric in time. As it turns out, reversible 
measures for the nearest-particle system are renewal measures, and they 
exist only when the rates are of a special form. 

The essential difference between the symmetric and nonsymmetric 
nearest-particle systems is that in the nonsymmetric case the transition 
rates only depend on the distances to the nearest ones, while in the sym- 
metric version they depend on the distances to the nearest discrepancy. Let 
{fl(l ,  r), 1 ~</, r~< oo} be a collection of nonnegative numbers satisfying 

sup fl(l, r) < oo, fl(l, r) = fl(r, 1) 
Lr 

fl(1, ~ ) = f l ( ~ ,  1 )>0 ,  fl(ov, ~ ) = 0  

For x e Z  and q e X =  {0, 1} z, we define lArD and r,.(q) by 

and 

I,.(~/) = x -- sup{ y < x: r/(y) r ~/(x) } 

r~(~/) = inf{ y > x: q(y) ~ q(x)} - x 

with usual conventions regarding s u p { ~ } ,  i n f{~} ,  and arithmetic 
involving oo. The rates for the symmetric nearest-particle system are then 
given as 

c(x, ~) = P( U,~), rx(q) ) 

The symmetric nearest-particle system is a generalization of a finite-range 
process which has been studied by Ted Cox and Rick Durrett, the threshold 
voter model. The threshold voter model, being a symmetric version of 
the contact process, has two natural trivial invariant measures, the point 
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masses on the identically one and identically zero configurations. Most of 
the research done on the threshold voter model concerns the question of 
whether coexistence or clustering occurs. We say that there is coexistence 
if a nontrivial invariant measure exists; otherwise, we say that there is 
clustering. Thus inspired, we will try to characterize as much as possible 
the invariant measures for the symmetric nearest-particle system, and try to 
determine when coexistence and clustering occurs. 

In constructing the infinite symmetric nearest-particle system the 01 
(or 10) configuration plays much the same role that 1 does for the ordinary 
nearest-particle system. In the ordinary nearest-particle system the flip rate 
at a site x only depends on the configuration up to the first 1 to the left 
and right of the site x. To construct the symmetric system it is necessary 
to restrict the process to the subset 

~-= 
L x~>O x<~O 

[l-q(x)]= ~ [l-r/(x)]=oo 1 and 
x>~0 x ~ 0  .) 

of the space X, for basically the same reason we need to restrict to the 
subset consisting of infinitely many ones to either side of the origin in the 
ordinary case. The construction then follows the model for the nonsym- 
metric nearest-particle system almost exactly; see Chapter VII, Section 3 in 
Liggett. c9~ In this case, however, the finite approximations are based on 
fixing a 01 configuration to the left and right of the finite set instead of 
fixing ones, since a particle does not need to know the values to the other 
side of a 01 in determining the flip rate. Making the obvious modifications 
using 01 in place of 1, the construction becomes straightforward if one also 
notes that the death rate of a 01 is bounded since the rates are bounded. 

As with the ordinary system, we can begin the analysis of the invariant 
measures for the symmetric nearest-particle system by characterizing the 
subclass of reversible measures. If S(t) is the semigroup for the symmetric 
nearest-particle system concentrating on X, we say that a probability 
measure p on X" is reversible for the process if 

ffS(t) gdp =f gS(t) fdp Vf, ge C(X) 

where C(X') is the collection of all bounded, continuous functions on ,~. 
As it turns out, reversible measures for the symmetric nearest-particle 
system have a form we will call a symmetric renewal measure (see pp in 
Theorem 1.1 below), and they exist when the rates are of a special form. 

822/80/5-6-13 
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The following theorem, which we prove in Section 2, is the analog of a 
result by Spitzer on the ordinary nearest-particle system. 

T h e o r e m  1.1. There exists a reversible measure for the symmetric  
nearest-particle system concentrat ing on �9 if and only if fl(/, r) is of  the 
form 

7"" " F ( t + r )  
u,r )=f f ( -~-Ff f  ) VI>~I, r > l  (1.2) 

for some positive function F, and setting 

, , ,  / '  ~ 2 )  ,~,/2 1 
gtx)=t~p(--(i-~,lqJ F ( k +  1) '  k>_-I 

38 > 0 such that  Zk~176 g(k) O k = 1 and Ek~176 l kg(k) t7 k < oo. 
If  this is the case, the reversible measure is given by 

k l  II Ire k m  + l 
f.-,,.,....-~ r . - . . . , , ~ , - ~  ,~ . . , . , _ .~  f . - . .~. . . -~ 

/~p(10...  011 . . .  1 0 . . . 0 l  . . .  1 0 . . . 0 l )  

/7(/<:,) 17(k~)... 17(/,:., +,) 17(t,)/7(/2)... 17(/.,) 
- (1.3) 

2oc 

for k;, li >t 1, and m i> 0, where fl(k) = g(k) # k is a probabil i ty density on the 
positive integers with finite mean 0c. 

Remark.  Note that if F is positive and the power  series 
~ k  [ 1/F(k + 1 )] x k has a nonzero radius of  convergence R, then for fl(/, r) 
of  the form (1.2), Theorem 1.1 says there is a constant  0 < c ~< oo such that  
there exists a reversible measure for fl(1, 1 ) < c ,  but not for fl(l,  1 ) >  c. 
Fur thermore,  c <  oo if and only if Zk  [Rk /F(k+ 1)] < oo. 

In Section 3 we impose some conditions on the rates fl(l, r) and use 
the free energy technique to show that  considering only measures which 
concentrate on X" the reversible measures are just the translation-invariant ,  
invariant measures. This analog of Liggett 's result for the ordinary system 
relies on our characterization of the reversible measures in the previous 
theorem. We will require 17(/, r) to satisfy (1.2), with F positive, and that  
17(/, r) be monotone  decreasing in I and r for large l+r .  This monotonici ty  
assumption is really quite natural,  since it is a generalization of the condi- 
tion for attractive rates. 

l " h e o r e m  1.4. Assume that  17(/, r) satisfies (1.2), where F is positive, 
and that  there exists a positive integer N such that  17(/, r) is mono tone  
decreasing in I and r for 1 + r >/N. Then any invariant,  t ranslation-invariant  
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probability measure on ~" is reversible and, hence by Theorem 1.1, a sym- 
metric renewal measure. 

In order to obtain some interesting applications of  Theorem 1.4 it will 
be useful to realize a few facts about  weak limits of  Cesaro averages and 
invariant measures. At the end of  Section 3 we show that in the attractive 
case the process can be extended continuously to include the configurations 
r / -  0 and r /=  1. Suppose/z  is a probability measure on X which concen- 
trates on a set of configurations for which the semigroup S(t) can be 
defined continuously. Assume that a weak limit of Cesaro averages o fpS( t )  
is a measure /z* which also concentrates on a set of  configurations for 
which the semigroup can be defined continuously. Denoting the convergent 
sequence as p , ,  by Skorohod 's  theorem there exist r andom variables r/, and 
q and a probability space I2 so that ~/~ has distribution p,, for each n, ~/has 
distribution p*, and r/n ---, r/a.s, on s'2. Thus S(t) f(~l~) ~ S(t) f(rl) as n ~ oo 
for all bounded continuous functions f .  Hence, 

ES(t) f(rln) ~ ES(t) f(rl) 
and 

S(t) f dp. ~ I S(t) f dt~* 

This result is enough to give us the invariance of  p* if the proof  of Proposi-  
tion 1.8 in Chapter  I of  Liggett (9) is followed. Suppose now that v is any 
invariant measure on X such that v(~') > 0. Let vc be the measure v condi- 
tioned to concentrate on ~'. Then for any cylinder set A and t > 0, 

1 A ~ d v  ~ l A ~ d v ,  
I1Advc-- 

v(.~) v ,( Y;) 

~eS(t) 1A dv F 
- v(~') = J  S(t) 1adv~ 

where the third equality follows because r/0 e �9 implies q, ~ ~'. Hence vc is 
invariant. To get a consequence of  this, assume the hypotheses of 
Theorem 1.4 and let v~/2 denote the product  measure with density 1/2. Then 
if a weak limit v* of  Cesaro averages of  v~/2S(t) concentrates on .~', it must 
be a symmetric renewal measure, while in the attractive case if no reversible 
measure exists, v* must  be the measure �89 + �89 Further  applications are 
found below. 

If  we have rates fl(/, r) of  the same form as in Theorem 1.4, then it can 
be shown that for a large class of  translation-invariant initial distributions 
any weak limit which concentrates on X is reversible. Thus if the process 
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is reversible (a reversible measure exists), a large class of  initial distribu- 
tions converge to the symmetr ic  renewal measure determined by the rates, 
while if the process is not  reversible, we get many  instances for which initial 
distributions which are symmetric  in zeros and ones converge to �89 + �89 
The p roof  of  these facts will be found in Section 4. 

It is conjectured that  the remark following Theorem 1.1 generalizes 
beyond the reversible case: Under  certain conditions on the rates, for fixed 
fl(l,r), / + r > ~ 3 ,  we can find a constant  0 < c ~  so that  there exists a 
nontrivial  invariant measure for fl(1, 1) < c. Under  other conditions on the 
rates, for fixed fl(/, r), l + i" >1 3, we can find a constant  c < ~ so that  only 
trivial invariant  measures exist if fl(1, 1 ) > e. These questions of coexistence 
and clustering have been partially solved at this time. The complete 
solution is still an open problem. 

2. CHARACTERIZATION OF THE REVERSIBLE MEASURES 

In this section we use two propositions to prove Theorem l. l .  

Proposition 2.1. Suppose that fl(l, r) satisfies (1.2), where F is 
some positive function. Set 

= ( F ( 2 )  ,~t/2 1 

g(k) \ ~ j  F(k + l) 

and suppose 30 > 0 so that  fl(k) = g(k) 0 h is a probabil i ty  density function 
on { 1, 2,..} with finite mean a. T h e n / l p  as given by (1.3) is reversible for 
the symmetric  nearest-particle system concentrat ing on ~'. 

Proof. We begin by considering more  carefully the approximat ing 
M a r k o v  chains which were used in the construct ion of the process. For  
m<~n, let Z .. . .  = { m , m + l  ..... n} and X , , , , = { 0 ,  I} z ' . .  Let G ' "  be the 
approximat ing process defined on X,  .... condit ioned on fixing a 0, 1 at the 
sites m - 2, m - I and n + 1, n + 2. Set/~ . . . .  to be the probabil i ty  measure 
on X,,, ,, which is defined by 

/~,,.,{(} =/~p{q: q = (  on Z ...... [ r / ( m - 2 )  = q ( n +  1 ) = 0  

and q ( m -  1) =r / (n  + 2 )  = 1} 

Our  first goal is to prove reversibility of  g,,,,, for the approximat ing  
process. For  x e Z ..... and ( � 9  Am,,, we must  show 

11 . . . .  (() P(lx(G), rx(G))  
(2.2) 

..... ((x) fl(lx(~), rx(()) 

where (x(Y) = ((Y) for y # x and G ( x )  = 1 - ((x) .  
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Suppose that ((x) = 1. 

Case A. ( contains a configuration of the form 

Then 

kl k2 

10 . . . 0  1 0 . . . 01 ,  ki>~l 
s i t e x  

p ..... (~) = fl(kl) fl(1) fl(k2) = g(k~) g(1) g(k2) 
It .... ((x) f l ( k ] + k 2 + l )  g ( k t + k 2 +  1) 

F(2) 1 1 I 
fl(1, 1) F(k] + 1) F(k2 + 1) [fl(1, 1) F(2)]  ~/2 

F(2) %1/2 1 

fl(---~,l)/ F ( k t + k 2 + 2 )  

F(kl + k 2 Jr 2) 
F(kl + l ) F(k2 + l ) fl(k~ + l, k2 + l ) 

fl(1, l) fl(1, 1) 

Case B. ~ contains a configuration of the form 

Then 

k I 

10. . .011 . . .  10, 
x 

k ~ l ,  l ~ 2  

/1 .... (() p(k) p(/) g(k) g(/) 

It .... ((x) f l ( k + l ) f l ( l - 1 )  g ( k + l ) g ( l - 1 )  

1 F ( k + 2 )  
F ( k + l ) F ( l + l )  F ( k + l ) F ( 1 )  f l ( k + l ,  1) 

1 F ( I+  1) fl(1, l) 
F(k+2)F(I) F(I) F(]) 

Case C. ( contains a configuration of the form 

Ii 12 

01 . . . 1  1 1- . .10,  lt>~l 
s i t e x  
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Then 

lt..,.(~) fl(11+12+1) g(ll+12+l) 
~,., .((x) r ~(1) ~(/2) g(t,) g(1) g(t2) 

F(2) ~,/z 1 
f l (1 ,1)J  F(l~+12+2) 

F(2) 1 1 1 

fl(1, 1)F( l ,  + 1)F(12+ 1) [F(2)  fl(1, 1)] i/2 

fl(1, 1) fl(1, 1) 

F(11+12+2) fl(l,+l, 12+l) 
F( l  I + 1) F(12+ 1) 

Hence (2.2) is satisfied. By symmetry, (2.2) also holds if we assume 
((x)  =0 .  Let S.,..(t) denote the semigroup corresponding to the process 

m , n  q, , and C,. . .  be the set of all functions on X.,, . .  Since, by (2.2), It,. , .  is 
reversible for . . . .  r/, , we have 

; f S  .... (t) gdlz . . . .=IgS. , . . ( t ) f  d/t .... Vf, g~Cm,. (2.3) 

We need to check that 

lim /.z,,,,, =~up 
m ~  - - o o  
n ~  - b o o  

in the topology of weak convergence on X. By the renewal property of/zp 
[which means given r/(x) = 0 ( 1 ) and r/(x + 1 ) = 1 (0), the random variables 
{ r/(k), k ~< x} are conditionally independent of the random variables {r/(k), 
k > x} ], for the limit on n it suffices to show that 

n s i t e s  

1 
/~p(01 .-. 101 ) ~ 2-~ a s  n---~ oo  

Now 

n n n 

. . .o  /~p(O1 �9 �9 �9 I O1 ) -/~p(O 1 I) _/~p(O1 �9 �9 �9 1) -/~p(O1 �9 �9 �9 I 1) 
/~p(O1 ) /~p(O1 ) 
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Similarly 

n n n 

n 

/~p(O1-.. I:"-~O) =/1#(01 .. �9 10) =/~#(01 �9 . ~ .  1) --p#(O1 �9 . : ~ .  11) 
~: (1o)  ~#(lO) 

Thus 

n n n n ~  I 

/~#(O1. - . lO1) - / za (O1 . . . l lO)=~#(1  .--llO)-ga(l.-.llO)--,'~-~-O'- 

by left\right symmetry and the Alternating Renewal Theorem. Let p be the 
ordinary renewal measure determined by the density p. Then for k~, li >1 1 
and m >1 0 

kl II Ira km+l 

~#(10-- .011 . . .  10 . . .01  .. .  10 . . . 01 )  

k l - - I  I 1 - - 1  Ira--I k i n + l - -  I 

= � 8 9  1 0 . . . 0 1 0 . . . 0 1 )  

So applying the regular Renewal Theorem, we get 

n 

- = l i m ~ ( 1 . . . I . . . 1 )  
n 

n n 

= lim 2/za(O1 ..~H 01) + 2/za(O1..~. 10) 
. 2/tp(O1 ) 

n 

= lim 2~#(01 .. .  101) 
n 

which gives the desired result. The limit as m ~ - o o  is obtained in basi- 
cally the same way. Now, by the construction, S .... (t) g ~ S ( t ) g  as 
m ~ - o o  and n ~ oo uniformly on compact subsets of X for each g ~ C(~'), 
and since/ta(~')  = 1, we can take the limit in (2.3) to get 

f fS( t )  g dpa = f gS(t) f dltp 

for all f ,  g e ~3, where ~3 is the set of functions on X which depend on only 
finitely many coordinates. Therefore, since ~3 is dense in C(~'), we can 
conclude that/~a is reversible. | 
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The next statement is basically the converse of Proposition 2.1. 

P r o p o s i t i o n  2.4. Assume that there exists a reversible measure/2 
on ~" for the symmetric nearest-particle system with strictly positive rates 
fl(l, r). Then there exists a positive function F such that 

F ( l + r )  
f l( l ,r)  for l~>l, r > l  

F(1) r(r) 

Furthermore, setting 

{ F(2) )1/2 1 for k~>l g(k)=kfl(1,1)/I F ( k + l )  

we have that 30 > 0 so that f l ( k ) =  g(k )O k is a probability density on the 
positive integers with finite mean, and/1 =/2p. 

Proof. The first step is to find equations which the function r( . , .  ) 
satisfies. By making a slight modification in the proof of Proposition 2.7 of 
Chapter IV in Liggett, tg~ we get 

p { r / ( x )  = 1 I r / (y) ,  y v ~ x }  - f l ( l~(q),  rx(q))  
P(lx(q), "x(q))+,6'(lJ'~x), rx(q.,.)) (2.5) 

Since fl(., .) is strictly positive, (2.5) implies that/1 assigns positive prob- 
ability to any subset of X which depends on only finitely many coordinates. 
For x ~ 7/and kl ..... k,/> 1, define subsets of X by 

Ax(k  I ..... k,,) 

= {q: ~/(x)=q(x+k~) . . . . .  11(x+k~ + . . .  +k, , )  = 1; 

and ~/(y) = 0 for all other x < y  < x + kl  + . . .  + k , ,  and y = x - 1 } 

By (2.5) 

/2(X~(j, k)) /~(j, k) 
/2 (A~( j+k) ) - f l (1 ,  1) 

for all x e Z  and all j, k >  1. Using (2.5) again, write 

/ 2 (Ax ( j , k , l ) )  / 2 (Ax ( j , k , I ) )  / 2 ( A , . ( j + k , l ) )  

12(Ax(j + k + 1)) - i x (Ax( j  + k, l))/2(Ax( j + k + l)) 

=f l ( j ,  k)  f l ( j  + k, l) 
for j , k , l >  l 

fl(1, 1)fl(1, 1) 
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A similar argument gives that this quantity also equals 

fl(k, l)fl(j, k + l) 
fl(1, 1) fl(1, 1) 

Now 
kt(ax(j,k, 1)) I~(Ax(j,k,l)) l~(Ax(j+k, 1)) 

kt(Ax(j+k + 1 ) ) -  t~(A,.(j+k)) i t (Ax( j+k  + 1)) 

fl(j, k) f l ( j+k,  I) 
= for j , k > l  

fl(1, 1,)fl(1,  2) 

A similar argument gives that this quantity also equals 

fl(k, 1)fl(j, k +  1) 
fl(1, 2)fl(1, 1) 

Thus we have for k # 1 

fl(j, k) fl(j + k, l) = fl(k, l) fl(j, k + l) 
Now for l > 1 

y(Ax(1,1, l)) /~(Ax(1,1, l)) a(Ax(2,/)) fl(1,1)fl(2,1) 

(2.6) 

Also 

/ t (Ax(/+2))  y(A.~(2, I)) /~(A,.(I+2)) 

/~(Ax(l, 1, l)) /~(A,.(1, 1, l)) /t(Ax(1, l +  1)) 

fl(2, 2)fl(1, I) 

~ ( 1 , / ) f l ( I , 1 + I )  
~(Ax(/+2))  /~(Ax(1, / +  l)) /~(ax(/+2)) fl(3,1)fl(2,1) 

Thus we have 

o r  

fl(3, 1)fl(2, 1)fl(2, l )=fl(2,  2)fl(1, l ) f l (1 ,1+l)  

fl(1,/)fl(l,/+l) fl(3,1)fl(2,1) 
fl(2,/) fl(2,2) 

= c  VI>~2 

where c is a constant. Now 

fl(2, 2 )=  fl(3, 1)fl(2, 1) 

and 

fl(4, 1)f l(3,  1)f l (2,  1) 
fl(3, 2 ) -  

cfl(2, 1) 

(2.7) 
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Assume i, j t> 2, and 

fl(i, j ) _ f l ( j  + i - 1 ,  1) fl(j + i -  2, 1). . .f l( j ,  1) 
cfl(i--1, 1)fl(i--2, 1)..-fl(2, 1) 

Then 

(2.8) 

f l( i+j,  l) fl(i,j) ~ ( j+  i, 1) f l ( j + i - l ,  l ) . . . f l ( j+  l, 1) 
fl(i, j +  1) = 

fl(j, 1) cf l ( i -1 ,  1)f l ( i -2 ,  1)...fl(2, 1) 

Hence, by induction, (2.8) holds for all i , j />2. Let F(i)= 
f l ( i -1 ,  1)...fl(2, 1)c, for i>2 ,  F(2) = c, and F ( 1 ) =  I. Then we have 

F(l +r) 
flU, r ) - - -  Vl>>. 1, r >  1 (2.9) 

F(I) F(r) 

Next we want to characterize the reversible measure/t. For k~, la/> 1 and 
m~>0, using (2.5), write 

kl  11 In* km + 1 

p ( 1 0 " - 0 1  1 " ' 1 0 " " 0 1 " "  1 1 0 - " 0 1 )  
xo x, x2 x.-2 ~.-1 x. f l (x , - i  - -xn-2,  x , - - x , _ l )  

k l  I I Ira--1 k in+ l+  1 
. - ~ . - ~  . ~ . . . - . ~ - ~  ~ ~ _ . . ~  

/ 1 ( 1 0 . . . 0 1  1 . . . 1 0 . . . 0 1 . . .  1 0 . . . 0 1 )  
xo Xl x2  X n - 2  Xn 

and 
k l  II I m - - I  k m + l + l  

p ( l O . . . O 1  1 . . . 1 0 . . . 0 1 . . .  1 0 . . . 0  1) 
x 0 x I x2 Xn - 2 Xn 

m 

fl(lm, I) 

f l ( X n _  2 - -  X n _  3 , X n - -  X n _  2 )  

kl  II I , . - 2  km+l + 2  - -  ~_.~_.~,__...~_.~ . ~ ~ ,8(1=- 1, 1) 
/ t ( l O . - - O 1 1 . . . 1 0 . . . 0 1 . . .  1 0 . . . 0  1) 

X0 Xl X2 Xn-3 Xn 

Continue in this manner to finally get 

k I 11 Im km + I 

/z(lO.. .O1 1 . . . l O . . . O 1 . . .  1 1 0 . . . 0 1 )  
xo xI  x2 X n - 2  X n -  I Xn 

/1(1 0 . . .  O1 ) f l(x._l  - - X n _ 2 ,  X n - - X n _  l ) ' "  " ~ ( X l - - X o ,  X n - - X l )  
xo Xn 

m 
I~ /m I-I,=, fl(i, 1).." I-I,=, fl(i, 1) 

V ( x . -  x,,_ =) r ( x .  - Xo) 
ltf~,oO'"O~,.) " - x . _ = )  F f x . - x , ) F ( x , - X o )  

p(1, 1) /~(1, i) 
- - . F ( I 1  + 1) - - F ( l m  + 1) 

C r 
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/~(1 0 .- .01 ) F ( x . - x o )  
xo  xn 

1131 

- ( f l (1 ,  l ) ~ ' F ( k , + l ) . . . F ( k , , ,  + + l ) F ( l , + l ) . . . F ( l , , + l )  
\ F(2) ] 

/ z (10 . . . 01 )  
_ ,;_o x ~1 " g ( k l ) ' ' ' g ( k " + ' ) g ( l ' ) ' ' ' g ( l ' )  

g t . -  o -  / 

where 

Set 

( F ( 2 )  ~1/2 1 

g(k) = k#(1, 1)/ F(k + 1)' 

n 

p( I 0 . . . 0 1 )  
hx( n ) _  sitex 

g(n) ' 

k>~l 

n>~l 

Then, since p(,Y)= 1, 

n I k 

/ t ( 1 0 . . . 0 1 - . .  1 0 . . . 0 1 )  
hx(n) __ ~ x 

k.l>~l g(n) 

n + k + l  

~(1 o . . .o  1) 
x 

= ~" g ~ n + k + l ) g ( k ) g ( l ) =  ~ hx (n+k+l )g (k )g ( l )  
k, l>~ I k, l>~ 1 

The remaining step in our proof involves solving for hx(n). Let H be the 
set of all nonnegative functions h(n) on { 1, 2,...}, such that h(1)= I and 

h(n+k+l)g(k)g( l )<~h(n) ,  Vn~> 1 (2.10) 
k,l>~ I 

Now H is convex and compact in the topology of pointwise convergence 
on [0, oo) x [0, oo] x [0, oo) x [0, oo) x ..., since h(1 + k + l ) g ( k ) g ( l )  <~ 1 
Vk, I. Now H is Jaonempty because h(n) = hx(n)/hx( 1 ) is in H, for x ~ 7]. Let 
Ho denote the set of all h in H such that equality holds in (2.10) for all 
n >i 1. Since H is metrizable, Choquet's Representation Theorem implies 
that every element of H has an integral representation in terms of the 
extreme points of H. Now the integral representation of any h in H0 can 
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only involve extreme points of H which are in H 0. Let h be an extreme 
point of Ho. Then [note that h(n)>0 for all n] 

Since 

and 

h(n) = ~. h(n + k + l) g(k) g(l) 
k,l>~ 1 

h(n + k + I~ h( 1 + k + l) g(k) g(l) 
= Z h ( l + k +  k,l>~ 1 

2 
k ,  l N  1 

h(1 + k + l ) g ( k ) g ( l ) = h ( 1 ) =  I 

h ( . + k  +l) 
h(l + k  +l) 

Ho Vk, 1 

(2.11) 

then (2.11) gives h as a convex combination of elements of H o. Since h is 
extremal, we must have 

Now 

Also 

Hence, 

Thus 

h(n + k + 1) 
h(n) Vk, l, n >1 1 

h(1 + k  +l) 

h(4) =h(2)h (3 )  and h(5) = [ h ( 3 ) ]  2 

h(5)=h(2)  h(4) 

[h(3)]  2 = h(2) h(4) = h(2) h(2) h(3) 

h (3 )=  [h(2)] 2 and h (4 )=  [h(2)] 3 

Now suppose h ( n + k + l ) = [ h ( 2 ) ]  ' '+k+~-l .  Then h ( n + k + l + 2 ) =  
h(n+k + l) h(3) = [ h(2) ] "+k +l+ i. So by induction h(n) = [ h(2) ]"- i  Vn >i 1. 
Set 0 = h(2). Then 

h ( 1 ) =  1 = y~ 
k,l>~ 1 

= 2  
k,l>~ 1 

h(1 + k + l) g(k) g(l) 

fSokg O k + tg(k) g(l) = (k 
k 1 
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Thus 

~ . g ( k )  Ok= 1 (2.12) 
k = l  

giving a unique 0 = h(2). Hence H0 consists of just one element, the func- 
tion h(n)=O "-1, 0 solving (2.12). So hx(n)=hx(1 ) 0 "-I,  for all x e Z  and 
n >/1. Thus by the definition of hx(n) 

n 

p(1 0 . . . 0  1 )g (1 )=p(1  0 1 ) g ( n ) 0 " - '  
x x 

If we interchange the roles of left and right we get 

n 

p ( l O . . . O 1 ) g ( 1 ) = p (  1 O1)g(n)O "-1 
x x + n - - I  

Hence/1(1 0 1) is independent of x. Therefore, h,,(n)=aO" for some con- 

stant a>O. Now we want to find a=/~(1 0 1)/g(1)O. In our characteriza- 
tion of the measure p so far we have not assumed anything special about 
the role of zeros versus that of ones. Thus it is also true that 

k l  II lm km + I 

p(O 1 . . .1  0 . . . 0  1 . . .1  0 . . . 0  1. . .  1 O) 

p(O 1 O) 
g(1) 0 g(kl) Ok'" "g(k"+]) Ok'+' g(ll) 0 t' "" .g(l.,) 0 t" 

So if we knew that p(1 0 l ) - - p (0  1 0), then we would know that the 
measure p is symmetric in zeros and ones. Now 

k I 

/x(OlO)-- ~ p ( l O . . . O l O . . . O 1 )  
k,l>~ 1 

= ~ ,u(1 0 1)g(k ) Okg(1 ) Og(l) O'=/.t(1 0 1) 
k.t->l g(1)O 

n 

giving the desired symmetry. Observe that since p (1 0.--  0 1 ) is independ- 
ent of x, we have 

n 

~(1 1 ) = 1 -  ( n +  1)~(1 0 . . . 0  1) (2.13) 
X / ' 1 = 1  
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must also be independent of x. We now know 
n 

�89 1)+ ~ p(1 ~ 1) 

Thus using (2.13) and (2.14), we get 

(2.14) 

giving 

Hence 

n n 

1 -  ~ (n+l) /~(1  ~ ' 0  1 ) = � 8 9  ~ /.t(1 f f ' ~  1) 
n = l  n = l  

n 

n/x(1 0 . - . 0  1 )=  naO"g(n) 
n = l  n = l  

1 
a D  

2 ~,n~=, ng(n) O n 

So if we set fl(k)=g(k)O k, where 0 is the unique value satisfying 
~.k~lg(k) ok= 1, then fl is a probability density on the positive integers 
with finite mean 0t, and 

k l  11 lm km + l 
~ ~ ~ r=---.~-.~ 

/~(1 0 . - . 0  1..- 1 0 - . -0  1.-- 1 0- - -0  1) 

= f l (k , )  f l ( k 2 )  . .  �9 fl(k, .  + ,) fl(l,  ) f l (12) . . ,  fl(l. ,) []  
20t 

Consider the example in which the rates have the form 

f l ( l , r )=(~+! )  p (l+r)PlPr p 

for I+  r >1 3, so that F(k)= k p. Then by Theorem 1.1 there exists a revers- 
ible measure for the system only if 

fl(l, 1)~<2 p 1 2 
( k  + 1) p 

(2.15) 

If the inequality in (2.15) is strict, then we have a reversible masure, while 
if equality holds in (2.15), a reversible measure exists if and only i fp  > 2. 
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3. THE TRANSLATION- INVARIANT,  INVARIANT MEASURES 

In this section we prove Theorem 1.4. We will assume that fl(/, r) 
satisfies 

F(l + r) 
f l ( l , r ) - - -  Vl>~ 1, r >  1 

F( I) F(r) 

for some positive function F, and that there exists a positive integer N such 
that fl(/, r) is monotone decreasing in 1 and r for l+r>~N.  The goal is to 
show that any translation-invariant, invariant measure on X" must be 
reversible (symmetric renewal). The method that will be employed here is 
sometimes called the free energy technique. It has been used by Holley and 
Stroock in studying spin systems, and derives its name from associations 
with physics, where the "free energy" of a measure is one characterization 
of physical systems. For an example of this technique with some motivating 
ideas as to its use in the present setting see Liggett. ~s) Now choose 0 > 0 so 
that 

k ~ _ _  O k 
F ( k +  1) <oo 

and 

Let 

Then 

F ( k +  1) 

0F(k) 
- - + T > I  as k - - , m  

( /7 (2 )  .~1/2 1 
g(k) = \fl(1, 1 ) /  F(k-+ 1) ok for k>~l 

g(k)  

g ( k +  l) 
- - ~  as k ~  

Define v to be the function on cylinder sets of X which is symmetric in 
zeros and ones, so that 

kl II lm km + l 

v(O.. .O 1 . . .  1 0 . . . 0  1 . . .  1 0 . . . 0 )  
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and 

kl 11 km Im 
r-...~_.~ ~ ~ ,.---~---~ 

v ( 0 - . . 0  1 . . .  1 0 . . .  1 0 - - . 0  1 . . .  1) 

=( ~ g(k))g(k2)...g(k.,)g(ll)g(12)...g(l .... l) ( ~ g(l) I 
\k>~kl \l>~lm / 

for ki, li, m ~> 1, with 
k 

v ( 0 . . . 0 ) =  ~ ~ g ( i )  
j>~k i>~j 

Let p be a translation-invariant measure on ~" which is symmetric in zeros 
and ones. In this paper we will actually prove more than is necessary for 
the proof  of  Theorem 1.4. The general statements in the following lemmas 
and propositions are intended for use in future results. So with that in mind 
we will not  yet restrict p to be invariant. Set p,=pS(t). For  n~>0, let 
Zo . .={O,  1 ..... n} and Xo,,,={O, 1} z~ Ifx~Zo.. and r/~Xo .... set 

f 
a~,(q, x) = J c(x, () +,(r 

{C:C ffi ,l on Zo,. } 

M:,(q)=p,{C:(=qonZo.,,}, N,,(q)=v(q) 
B. = {(x, q) eZo,,, • Xo.,,:r/(x) = 1 and ~y, z, v such that 

y, .7 ~ Z 0 , x _  1 , / d ,  v ~ Z x + l , n ,  

and q(y) = O, r/(z) = 1, q(u) = O, and q(v) = 1 } 

Define the free energy on [0, n]  of the measure p,  as 

H,,(/~,) = Z M:,(q) log \ N.(r/) J 
q ~ XO, n 

where the function x l o g x  is understood to be 0 at O. Our  first result 
enables us to write the derivative of  H . (p , )  as a sum of terms over B,, plus 
a sum of negative terms. 

L e m m a  3 . 1 .  We have 

dH,,(la,) d ~  - ~ [a~'(Vl~'x)-a~'(q'x) ] l~ M"~(vl) N"(q*) 
(..-,.)~ B. a,',(q, x) M'.(Vx) N,,(q) 

_ _ !  a t 2 ~" [ "(q'*'x)-a~'(tl'x)]l~ 
x~Zo,,, a~,(~, x) 
q E XO, n 
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Proof. For fixed r/e Xo. ., let 

gi,>_{lo if 
otherwise 

If we denote the generator of the process by O, then from the construction, 
[S(s)g-g]/s--*g2g as s--*O uniformly on compact subsets of R', so we 
have 

dM~(~) 
at ~ g2gdlt'= ~" [a~'(rlx'x)--a"(rl'X)] 

x~Zo,. 

Now 

dH.(ktt) dM'.(q) (M'.(q)) 
at = Z d - - ~  l~ ,~,r \ ~ J  

, d ( M , . ( . ) )  
+ Z M,,(~/) ~ log \N,-AT-,//~-)J 

q E Xo,. 

Z 
X �9 ZO, n 
qe Xo.. 

[ ,,(qx, x) --a~,(q, x)] log \ N~(.(~)-] 

a f + Y~ [ .(,lx, x)-a ' . ( ,~,x)]  
x ~ Zo, n 

q~ Xo, n 

~. [a'.(qx, x)-a~,(~l, x)] log \ N , - ~ J  
x E Zo,  n 
q E 3(0, . 

Making the change of variable q --* qx gives for x e Zo.,, 

N,,(rlx) 
[ a.(rL., x)--a.(rl, x)] log 

~xo,,, M.(rlx) 

N,,(r/) 
---- -- '~, [a,,(r/.~, x) --a.(rl, x)]  log M,,(r/) 

q ~ Xo,. 

So the previous .two identities show 

dH,,(12,) 1 
dt =~ Z 

q e X O . n  

[a,,(q.~, x ) -  a,,(r/, x)]  log 
M,,(q) N,,(qx) 
M.(qx) N.(q) 

822/80/5-6-14 
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Thus, 

Handjani 

dH,,(l~,) 1 
dt =2  ~" 

X E ZO, n 
q e  Xo .n  

[a'.(qx, x ) -  a'.(,~, x)] log a'oOlx, x) M',(~) N,,(~x) 
a,](q, x) M,~(~x)N,(~) 

_1 E 
2 ~zo. ,  

q ~ Xo, .  

[ a~,(q.,, x) -a[,(q, x) ]  log - -  
a~,(,~.~, x) 
a~,(,t, x) 

Now we can replace the first sum by twice the same sum over just those 
r / and  x for which q(x) = 1, since replacing q by qx in the summand  has no 
effect. The required statement then follows, since the terms in the first sum 
vanish for (x, r / ) r  as can be seen by the facts below. 

Let q(x) = 1, where (x, r/) r B, .  

Case A. Here i is the distance to the closest 1 to the left of  x, and 
j is the distance to the closest 1 to the right of  x, and i, j > 1. 

Then 

while 

at,(qx, X) F(i + j)  
- -  = c(qx, x) = fl( i, j) 
M~,(qx) F(i) F(j) 

=fl(1, 1) g( i -  1)g(1)g(j-- 1)=fl(1, 1) N,(q__..__.~) 
g ( i + j -  1) N,,(qx) 

M',(q) I 
a,',(e, x) fl(1, 1) 

Case B. Here i is the distance to the closest 0 to the left of  x, and 
j is the distance to the closest 0 to the right of  x, and i, j > 1. 

Then 

while 

atn(r/, x) F ( i+ j )  =fl(1 ,  1' N"(r/x) 
M~,(~------~ = c(q, x) = F(i) F(j------~) ~ 

t M ,,Olx) 1 
a,',(rl.,.,x) fl(1, 1) 
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Case C. Here i is the distance to the closest 1 to the left of  x, and 
j is the distance to the closest 1 to the right of  x, and i >  1, j =  1. (We get 
the same basic result by assuming i = 1, j > 1.) 

Then 

a,t,(qx, x) , F ( i +  1) g ( i - -  1) 
=ctqx ,  x )=f l ( i ,  1)-F(i)F(I-----~ ) g( i )F(1)  

Now k is the distance to the closest 0 to be left of  x, and l is the 
distance to the closest 0 to the right of x, and k = 1, 1 > 1. 

Then 

a~,(~/,x) r ( / +  1) g ( / -  1) 
M ,  ( tl------ ~ = c( q, x) = fl( 1, 1) - F( l ) F(I-------~) - g( l ) F(1-~) 0 

while 

g ( i -  1) g(l) = N,(q)  
g ( i ) g ( l -  1) N,,(~Ix) 

The aim at this point is to show that for any interval [0, T ]  the 
supremum over t e [0, T]  of  the first sum in the expression on the right of  
the identity in Lemma 3.1 is bounded above by something that is o(n) at 
least along some subsequence. This will be accomplished using a series of 
lemmas and propositions. Let a = inf, fl( 1, n) > 0 and b = supl.r fl(l, r) < o0. 
Set G(k)=Y.~=kg( l  ). Since g(k) /g(k+ 1)J.y as k--* ~ ,  by Lemma 3.12 in 
Ligget(s) we have 

G(n) ? 
lira - - -  < oo (3.2) 

. . . .  g(n) y -  1 

and 

lim Z~.=,G(k)  ( y _ ~ ) 2  . . . . .  g(n) = < oo (3.3) 

The first step will be to find upper bounds for N,,(q)lN,(qx) and 
N,(~lx)/N,,(q) when (x, r/) e B,,. 

Lemma 3.4.  Let (x, r/) e B , ,  where 0 < x < n and ;7 = 0 on Zo..~_ ~, 
or x = 0. Then N,(~/)/N,,(~x ) is bounded above by a constant independent 
of n, x, and r/. For  x > 0 ,  if q = 0  on Zo. , \{x} ,  then 

N.(  rl.,: ) .< M 
N,(q)  f l ( x + l , n - x + l )  
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for some constant M independent of n, x, and q. If q = 0 on Zo.vk{x} and 
r/(v+ 1 )=  1, where O < x < v < n ,  then 

N.(q;) N 
N,(rl)<'fl(x+- I, v - - x +  1) 

for some constant N independent of n, x, and r/. Otherwise, N,(rL~)/N,,(q ) 
is bounded above by a constant independent of n, x, and q. 

Proof. Case A. 0 < x < n ,  q = 0  on Zo.x- l ,  and q ( x +  1)=0 .  

1. If t / = 0  on Zo., , \{x},  then 

and 

So 

N.(r/~)= ~ g(v -u)=  
u < 0  k = n + l  
v~>n 

G(k) 

N . ( q ) =  ~. g ( x - u ) g ( 1 ) g ( v - - x ) = G ( x )  G ( n - - x ) g ( l )  
u ~ O  
v ~ n  

N.(qx) _ Zk~'=. + I G(k) g(x) g(n -- x) g( 1 ) 
N,,(q) g(n + 1) G(x) G ( n - x ) g ( l )  

F(x+ 1)F(n-x+ 1) p(1, 1) 
X 

F(n + 2) 

Zk~'=,,+, G(k) g ( x ) g ( n - x )  fl(1, 1) 
m 

g(n + 1) G(x) G(n - x) fl(x + 1, n - x + 1 ) 

Thus by (3.2) and (3.3) 

and 

N.(rlx) M <<. 
N.(q)  f l ( x + l , n - x + l )  

N,,(r/) .< .~f 
N,,(qx ) "~" 

for some constants M and )~r which are independent of n, x, and ~/. 
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2. For x < v < n ,  if r /=0  on Zo.v\{x} and r/(v+ 1)=1,  then 

N . ( t / J =  ~ g ( o - u ) K = G ( o + I ) K  
u < 0  

for some constant K, and 

N,(q) = Y', g ( v - x ) g ( 1 ) g ( x - u ) K = g ( v - x ) g ( 1 )  G(x)K 
u <<. O 

So 

N,,(qx)=G(v+ 1) g ( v - x )  g(1)g(x) F(x + 1) F ( v - x  + 1)fl(1, 1) 
N,,(rl) g(v+ 1) g(v-x)g(1) G(x) F(v + 2) 

G(v+l)g(x)  fl(1, 1) 
g(v+ 1) G(x) fl(x + 1, v - x +  1) 

Thus by (3.2) 

and 

N,,(~lJ N 
N,,(q) <" fl(x + l , v - x  + l) 

N.(r/) ~< 
N,,(r/j 

for some constants N and N independent of n, x, and r/. 

CasoB. O < x < n , ~ l = O o n Z o . x _ ~ , a n d q ( x + l ) = l .  
Then 

N,,(tlj= ~ g(k)g(1)C 
k > x  

I 

= ~, F(2) 1 _ _ 1  Ok+t C 
k>.~ p(1, 1) F(k + 1) F ( t+  1) 

1 

= y, F(2) f l ( k + l , l + l ) o k + t C  
k>~fl(1,1) F ( k + l + 2 )  

! 

= Y. F ( E ~ ) p ( k ' t + I ) B ( I ' k + / + I ) o ~ + , C  
k,.~/~(1, 1) /~(1, k ) F ( k + / + 2 )  

/ 

1141 
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where the sum over I is either over all 1 I> n - x or just one fixed l, and C 
is a constant, while 

Thus 

and 

N,,(rl) = ~. g ( k -  l )g( l+ 1)C 
k > x  

I 

~> F(2) 1 1 Ok+l C 
= k  ,_fl(1, 11F(k) F(I+2~---) 

I 

= ~7 _F(2)_ f l (k , l+2)  ~k+, C 
~,~,,,8(1, 1)F--~+ l--~ 2)e 

I 

- r _F(2) p(k,l+l)~(1, k+l+l)ok+,C 
- k ~ . p ( 1 , 1 )  fl(1, l + l ) F ( k + l + 2 )  

I 

N,,(q) b - - < ~  
N,,(rL,) a 

N.(~) b 
N,,(~I) a 

Case C. x = O. 

1. For 0 < u < n ,  if t / = 0  on Zo. , \{x} and r / ( u + l ) =  1, then 

and 

N,,(~I) = G( 1 ) g(u) K '  

N,,(q~) = G(u + 1 ) K'  

for some constant K'.  Hence 

N,,(rl) G(1)g(u) G(1)g(u+l )g(u)  
N,,(qx) = G(u + I~----S - G(u + 1 ) g ( u +  I) ~<M' 

for some constant M '  independent of n, x, and t/. Also 

N,(rlx) G(u + 1) ~< G(u) M "  
N,,(q) = G( 1 ) g(u) "" G( 1 ) g(u) <~ 
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for some constant  M "  independent of  n, x, and q. 

2. I f  q = 0  on Zo, . \ {x  }, then 

and 

Thus 

N',(qx) = E g ( u - v ) =  
u < 0  k = n + l  
0 9 0  

G(k) 

N,,(q)=G(1)  ~_, g (u )=G(1)  G(n) 
u ~ n  

N,(q) G(1) G(n) 
m oo 

N.(~/x) 5-'.k=.+ 1G(k) 

G(1)[g(n) + G(n+ 1)] 

Y.k~.  + l G(k) 

G(1)g(n) . G(1 )G(n+I )  
- y.~=--~-+ i - -~k ) -t- X ; = , , + ,  G(k) 

_< c(1)__g(n) a(1) + l) N' 
"~ g ( n + l )  + Z f f = . + ~  G(k) < 

for some constant N '  independent of  n, x, and q. Also 

o~ k ~ k N,,(qx) )-~kfn+lG( )-<~kfn+lG( )-<N" 
N.(rl) - ~ G ~ ) )  ~" G(1)g(n+ 1) "~ 

for some constant  N"  independent of  n, x, and r/. 

3. For  0 < u < n, if r /=  1 on Zo.u and q(u + 1 ) = 0, then 

and 

N.(q) = ~. g( l) K" = G(u + 1) K" 
I > - u  

N,(q,:) = G( 1 ) g(u) K" 

for some constant  K". Thus, by basically the same estimates as are used 
in 1, N,(q)/N,(q,,) and N,,(~L,~)/N,(q ) are both bounded by constants 
independent of  n, x, and r/. 

4. For  q =  1 on Zo. . use the same ideas as in 2. I 
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Remark. Note  that if we use the facts that the function v is sym- 
metric in zeros and ones and the role of  left and right can be interchanged, 
then Lemma 3.4 covers all possibilities, and hence we have upper bounds 
on N,,(q)/N,,(rL, ) and N,,(qx)/N,(rl) for all (x, r/)~B,,. 

L e m m a  3.5.  There exists a positive constant c so that 

fl(k, l) >1 cg(k) ?k 
for all k and l. 

Proof. If  k, l >  1, then 

fl(1, 1)g(k-1)g(1)g(l-l) 
~(k,t)- 

g(k+l-l) 

, g ( k - 1 )  ' k '  g ( l - 1 )  
=fl(1,  1)g(1)g---~--~-g t )g(-k~7--1) 

>>. cg( k ) yk 

for some positive constant c, because 

g(n + k) 

for some c ' >  0, since 

g(n) >~?kc, Vn, k ~  1 

g(n) 
- -  >~ y V n >>. N 
g(n+ 1) 

The result follows since infk ~ ~ fl(k, 1 ) > 0 and g(k) ?k is bounded. I 

Let 

and 

h,(k) =/~,{(  ~ X:((O) = 1, ( ( k ) =  1, and ( = 0  on Zl,k_~} 

oo 
H,(k) = ) '  h,(l) 

I = k  

Then S~k~=lH,(k)< ~ ,  since /z, is translation invariant and concentrates 
on ~'. 

L e m m a 3 . 6 .  I f q x = 0 o n Z 0  .... then 

a,',(qx, x )"~cg(nTi ) ) ,  Ht(n + 2) 
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and for 0 ~< x < v < n ,  if r/x = 0 o n  Zo., and q(v + 1 ) = 1, then 

M~,(t/x) .< 1 

a,,(rlx, x) cg(n + 1) 

for some constant c > 0 independent of n, x, and r/. Similarly, if r /=  1 on 
Zo .... then 

M ~ ,  '~-'~'k ~> ,, + 2 H,(k) 
a,t,(q, x) <<" cg(n + 1 ) y" + I H,(n + 2) 

and if ~/= 1 on Zo.,~ and r/(v + 1) = O, then 

M ,',( ~l ) _< 1 
a.(q, x) cg(n + 1) 

Proof. If  r/x = 0 on Zo.., then using the previous lemma and the fact 
that g(k) yk is decreasing for large k, 

a:,(qx, x)= ~ ~(x-u, v-x)h,(v-u) 
u < O  
t ' :>n 

>1 ~ cg(x-u) rX-"h,(v-u) 
u < O  
v > / I  

>~cg(x+t)y  ~+1 ~ h , ( v + l )  
u > n  

>~cg(n + 1) y"+ l H,(n + 2) 

for some positive constant  c independent of  n, x, and q, while 

M~,(r/.~)= ~ h , ( v - u ) =  ~ H,(k) 
u < O  k > ~ n q . - 2  
o > n  

If  ~/x=O on Zo, v and q ( v +  1 ) =  1, then 

a,',(~x, x)= F. /~(x-u, v - x +  1) 
u < O  

�9 xp t{ r  r = 1, ~ = 0 on Z.+ 1.o, and ~ = r/x on Zo,.} 

<<.cg(n+ 1) y,,+l 

x ~. I t , {~:~(u)=l ,~=OonZ.+, ,o ,  and~=qxonZo . . }  
u < O  
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M'.(rlx) = ~ /x,{~:C(u) = 1, ( = 0  on  Z . + , , o ,  and  ( = r / x  o n  Zo,.} 
u<O 

The second statement follows from the first and the fact tha t /~ ,  is sym- 
metric in zeros and ones. I 

Lemma 3.7. We have 

2 
(x , r l )  e a,, 

and 

1 
lim sup }-'. ' x)  = - a,,(qx, 0 

n ~ o o  t ~ [ 0 .  T] n (X.rl) e B  n 

So 

1 
lim sup - ~ a',(q,x)=O 

n ~ o o  t ~ [ 0 .  T] 1~ (x .q )eBn  

Proof. For  all t e [0, T ]  

M...(,.)= 2 ' M,(q.,.) 
x = 0  q: (x.q)EBn 

~<2 ~ [ / t , { ~ : ~ = 0 o n Z o . ~ _ l }  + / ~ , { r  onZo, x_l} ] 
x = O  

n 

= 4  x f b -~ . ( l - - e -  r ) z~ ,  ~(') d/~ 
= 0  

1 
s u p -  ~ M,',(qx)--*O 

t e [ 0 .  T] n ( x . q ) e B ,  

by the fact that  /1 concentrates on )~ and the dominated  convergence 
theorem. The first statement follows since a],(y/x, x)<~bM[,(qx). The proof  
of  the second statement is essentially the same. I 

With the preceding technical lemmas in hand, we now can show that  
the previously mentioned quanti ty is o(n) by dividing B,  into disjoint sets 
corresponding to bounds we have obtained for various terms. 

Proposition 3.8. Let 

/~,,= { ( x , q ) e B , ' 0 < x < n ,  q ( x -  1 ) = 0  a n d q ( x +  1 ) =  1, o r q ( x -  1)--  1 

and q(x + I ) = 0; or x = 0 and q(x + 1 ) = 0, or x = n and q(x - 1 ) = 0} 
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Let 

Then 

and 

~ , ,=  {(x, q)~B.:  0 < x < n ,  r / ( x -  1 ) = 0  and r / (x+  1) = 1, 

or q(x - 1 ) = 1 and tl(x + 1 ) = 0; or x = 0 and 

q(x+ 1 )=  1, o r x = n  a n d q ( x -  1 )=  1} 

1 l imsup sup n ~ a't'(qx'x) l~ 
,, /~[0.r] (x.~)~. a,,(q, x) M,,(rlx) N,,(rl) 

lim sup 
n 

Proof. 

! ! 

sup - ~,, --a',(r l, x) log a,,(qx, x_) M,,(r/.__~)N,,(rL,. ) -< 0 
,~[o,r] n (x,~)~. a,,(q, x) M.(rl~ ) N,,(rl) 

On B,, 

a'.(,~x, x) M,',(,1) l 
! t M.(qx) a,,(tl, x) a 

and N,,(qx)/N,,(q) is bounded by a constant. Thus 

1 a,t,(qx, x) M,',(q) N.(tlx) 
l imsup sup - Y' a'.(tl x ,x)  log 

,, t~[0. r ] n  (x.~)~. #.(rl, x) M'.(rlx ) N,,(rl) 

1 
~<Klimsup sup n ~ a~.(rlx, x)=O 

n t ~ [ 0 ,  T ]  (X ,  r l ) ~  n 

for some constant K > 0. The proof  of the second statement is basically the 
same. | 

Proposition 3.9. Let 

and 

Then 

/~,, = {(x, q) eB,,:  r /=  I on Zo,,, } 

B . =  {(x, r/) ~B,,: r / x=0  on Zo.,, } 

l i m i n f I  1 2 a,',(r/x, x ) l o g  
Ln (x,~)e ~. 

t 1 a,,(rl~, x) M,,(q) N.(q..) 
a,l,(rl, x) ' M,,(rlx) N.(tl) 

_ 1  Z a,',(tl, x ) l~  a"(qx'x)-M~'(tl)N'(tlx)] <~0 
n (x.q)~h. a~,(q, x) M~,(Ylx) N.(rl) J 
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While if there exists a 6 > 0 such that 

l~{tl(O)=O ltl(x) =O for all O < x < n and tl(n) = l } >13 

for all n >1 I, then 

[~ ' x M t t, . ,  a.(q.., ) .(rl) N,,(rlx) 
lim sup sup ~ a.~Ix, x) log _-727,_ -7 ~.--;77S-,.., .-7-7-7.. 

,, ~ [O,T] (x,~)e& a,At h x) m,,(rlx ) lv,,(r/) 

m ~ �9 a'.(rL,., x) M,',(rl) N.(Vx)l <~ 0 
2 a~,(r], x )  ,og ] 

Fl (x,q)e~n 

Proof. On/~,, 

a~,(qx, x) 
! 

M.(rL,.) 
m < ~ b ,  

M~l(r]) < Ek>~,,+2H,(k) 
a.(rh x ) cg(n + ~ ~ +  i-H--~-+ 2) 

and N.(rlx)/N.(rl) is bounded by a constant. On/}, ,  

a,~(~, x) M,~(qx) N.(q) 
M~,(~)' a~,(q~, x)' N.(q~) 

are bounded by the same things, respectively. Since 

and 

Y~ ~'.(~x, x) 
(x,q)eB. 

Y . a,',(,7, x )  
(x, tt ) e/~,, 

are bounded, it suffices to show that 

lim i n f l  log ( ~k->,,+2 H' (k)  "~ 
\g(n + 1) y"+' H,(n+ 2)J <<.0 

to prove our first claim. Writing 

~ log  (g(n Zk>~,,+ 2 H,(k) 

= _ l l o g ~ k ~ , , + 2 H , ( k )  l o g g ( n +  1) 
n H,(n + 2) n 

n + l  
H 

- -  l o g  y 

(3.10) 
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our result follows since 

and 

lim 1_ log g(n) = - log  y 
n n 

1 Eke,, H,(k) 
lim inf -  log = 0 

, n H,(n) 

by Lemmas 3.7 and 3.8, respectively, in Liggett. (8) Now 

and 

a,',(vx, x) 
( x m )  �9 ~,, 

a,t,(rh x) 
(xm) e ~. 

are both bounded above by 

bp,{q: r/(x) = 0 for n sites x ~ Zo.,, } 

~< 2bp,{ q: q = 0 on Zo.t,,/21} 

<~ 2b I ( 1 - e -br)r}"~] ,i(i) d,u ~ 0 

since p concentrates on ~'. So to prove our result in the case where p 
satisfies (3.10) it suffices to show 

I (/ Zk~>,,+2 H,(k) "~ 
sup - log 

,~[o,r] n \ g ( n +  1) y,,+l H,(n +2),/  

is bounded above in n. This follows again by Liggett's Lemma 3.7 and the 
fact that 

1 ( 1 ) 1 ('e("+2)bT~ 
sup -- log ~<-- log 

,~to, r]n  H,( +2)  n \ H o ( n + 2 ) J  

where 

1 1 1 log Ho(k + 1 ) log Ho(n+2)  =nlogHo(2)  nk=l  

is bounded above by (3.10). 
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Proposition 3.11. Let 

Let 

Then 

B',,= {(x,q) eB. :  0 < x < n , r / ( x -  1)= 1 and q(x+ 1)= 1; 

orx=Oandrl(x+ 1)= 1, o r x = n a n d q ( x - 1 ) =  1 }\/~,, 

B',', = {(x, rl)eB.: 0 < x < n ,  r / (x -  1) = 0 and q (x+  1)=0;  

o r x = 0  and q(x+ 1)=0,  o r x = n  and v/(x-  1)= 0}\/~,, 

1 t ~ t . .  a.(qx,. ) M.(rl) N.(rlx) 
limsup sup ~'. a~,(qx, X)mg a ~ 7 ( ~ , ~ ) ~ . ( ~ )  

n t ~ [ 0 ,  T ]  {x,q)EB~, 

a,',(Vlx, x) M,',(q) N.(r/x)] ~< 0 _ l  Z a~,(~/,x) l o g ~ - - ~ - -  
n (.....)~s; a.(rl, x) M.(qx) N.(q) ] 

Proof. On B'. 

a~,(~lx, x) 
! M.(q,:) 

m < < . b ,  
M~,(q) .< 1 

t ~ ~)n+ l a,,(Vh X) cg(n + l ) 

and N.(qx)/N.(q) is bounded by a constant. On B~', 

a,',(r h x) M~,(qx) N.(q) 
l ' t M.(r/) a,,(~/x, x) N.(~L,) 

are bounded by the same things, respectively. So as in the previous 
proposition it suffices to prove that 

l l ~  1 ) 
n g (n+l ) y  "+l 

logg(n + I) n + l  
n F/ 

- -  log 7 

converges to O. This follows as above. I 

Proposition 3.12. Let 

Let 

B,*={(X. Vl)eB.: O < x < n , q ( x -  1) =0~ and r/(x + 1)=0} 

B**= {(x, r / )eB. :  0 < x < n ,  q ( x -  1)= 1, and rl(X+ 1)= 1} 
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and 

1 
l imsup sup - y '  a'.(qx, x) log 

n t ~  [ O , T ]  l 'l (x,q)E.B~ 

1 
lim sup sup - ~" a,',(q, x) log 

n t ~ [ O , T ]  n (x,q)~B~* 

a~,(e~, x) M~,(q)N,,(q~) 
a,~(q, x) M~(~)N. (q)  

a~,(tl, x) M~,(qx ) N,,(q) 
a'.(~l_.., x) M'.(rl) N,,(qx) 

<~0 

~<0 

Proof. On B,* 

M'~(q) 1 

a~,(q, x) fl(1, 1) 
and a~,(tlx, x) <~ b 

Also: 

Case A. r/~:=O on Zo,.: 

N.(q.~) <~ M 
N.(rl) ~(x + l, n -  x + l ) 

CaseB. O < x < v < n ,  t l x = O o n Z o . , . a n d q ( v + l ) = l :  

N,,(q.,) N 
N.(rl) <" fl(x 1, v - - x +  1) 

by Lemma 3.4. So to prove the first claim of this proposition in Cases A 
and B by the monotonicity of fl(l, r) it suffices to show 

1 '~ f l ( x + l , n - - x + l )  

and 

xp,{~': ~ = 0  on Zo,,, } Ilog fl(x + 1, n - x +  1)l 

I n - -  1 n - -  1 

Z Z f l ( x + l , v - x + l )  
X = I  V ~ .',r + 1 

xa ,{( :  ( = 0  on Zo.~, ~(v+ 1)= 1} Ilog fl(x + 1, v - x +  1)l 
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both converge to zero uniformly on [0, T]. The function s log s is bounded 
on compact subsets of [0, oo) and p(l, r) is uniformly bounded, hence these 
statements reduce to 

lira sup p , { ( ; ( = 0 o n Z o . , ,  } 
n / ~  [ O , T ]  

~<lim f (1- -e-br )  ZT=''m) d,u=O 

which is true since p concentrates on ~'. The second claim follows by 
symmetry. II 

Now 

B,,~I~,,uBI, uB,*,=~,,u~,,uB,'IuB,**=B, (3.13) 

Set 

1o a'.(q.,, x) M'.(r/) N.(qx) 
C~,(x, q) = [ a~,(rlx, x) -a~,(rl, x)] g a~,(rl ' x) M'.(rl.~) N.(q) 

and set 

D~,(x)= ~ [a~,(qx, x) -a ' . (q ,x)]  log a''(qx'x~), 
.~Xo,. a,,(q, x) 

for xeZo.,, and ~leXo.,,. Notice that D',(x)>10 for all x and n. 

Corollary 3.14. If~z is invariant, then 

lim inf 1 ~ D~ = lim inf 1 ~ C~ q) = 0 
n n x = O  n 1"1 ( x . q ) ~  B .  

while if/1 satisfies (3.10), then 

1 
limsup sup - ~ C',(x,q)<~O 

n t e [ O , T ]  n (X, r l ) e B , ,  

Proof. This follows immediately from Lemma 3.1, Propositions 3.8, 
3.9, 3.11, and 3.12, and the identity (3.13). II 

Propos i t ion  3.15. Any symmetric renewal measure is ergodic with 
respect to translation. 

Proof. Let pa be the symmetric renewal measure corresponding to 
the probability density ft. Set T: X ~  X to be the transformation which 
corresponds to translation by one unit to the right. Since the collection ~3 
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of functions which depend on only finitely many coordinates is dense .in 
C(X), to prove that Pa is ergodic it suffices to check that 

f f(r-")g [. f a ,a l g a ,a (3.16) 

as n ---, oo for all f ,  g e  3.  It is enough to check (3.16) for f and g which are 
indicator functions of cylinder sets, since any element of ~ is a finite linear 
combination of such functions. Let e > 0. Choose M so that 

M 

~a(O. . .O)<e  

This is possible because/~p(~') = 1. We will identify each cylinder set with 
a finite number of specified coordinates. Suppose A and B are cylinder sets. 
Let n be large enough so that the distance between coordinates specified by 
T-"A and those specified by B is greater than 2M. Assume (wlog) the last 
coordinate specified by A is a 0, and the first specified by B is a 1. Then 

> 2 M  k I 

:t#(T-'A ... B ) -  ~ I~#(T-'A B) <2e 
k, l=O m 

For 0 ~< k, l < M, we have 

k I 
k I ~ m 

O~...B I~a(T-"A'"O1)I~P(O~'"B) I~p(T-"A . . .0  1 . . . . . . .  ) =  /~p(Ol) /~p(Ol) pp(O1.- .O1)  
m 

From the proof of Proposition 2.1 we know that 

nl 

ltp(O 1 . . -0  1) ~ # ( 0  1)/.t#(O 1) a s  m ----~ o(3 

Since m ---, oo as n ~ oo for fixed k and l, we can choose n so large that 

k / 
.---,---, ~ m k I 

I~B(T-'A ...0 t)/~p(O 1... B) ~ 1)-Izp(T-'A.."~.O 1)/zp(O l . ~ . .  B) 
/ p(o l) 

< 
M 2 

822/80/5-6-15 
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for all 0 ~< k, 1 < M. Using the fact that  

k I 

kj=o/tP( T - " A  . .'-~-..O 1)/lp(O ~. . . B) - - / tp(  T - " A )  ltp(B) < 2e 

we get (3.16) for the indicator functions 1A and 1 n. II 

Proof  o f  Theorem 1.4. L e t / t  be any translat ion-invariant ,  invariant  
measure on ,~ which is symmetric  in zeros and ones. It  follows from 
Corollary 3.14 and a s tandard "free energy" argument  (see Liggett (8)) that  

a,(~x, x ) = a , ( ~ , x )  

for all n >t 0, x ~ Z0, . ,  and r/~ X0, . .  Thus / z  is reversible. N o w  suppose we 
were not  given that /~  is symmetric  in zeros and ones. Then consider the 
measure p which is defined by applying p to configurations with zeros and 
ones interchanged. The measure l p  + �89 is then symmetric  in zeros and 
ones, and hence reversible. It is also a symmetr ic  renewal measure. Since 
an ergodic measure is an extremal translat ion-invariant  measure (see 
Corollary 4.14 in Chapter  1 of  Liggett(9)), we get/1 =f t .  Thus our  p roof  is 
complete. | 

In the attractive case we can extend the infinite nearest-particle process 
to include the starting configurations r/(x) = 0 and q(x) = 1. For  g e ~3, t2g 
extends continuously to X, since by attractiveness flU, r) extends conti- 
nuously to a function on { 1, 2 ..... oo } x { 1, 2 ..... oo }. Let g be an increasing 
continuous function on X. If  r/, ~ ~ ,~" and r/~< ~, then 

and so we can define 

S ( t ) g ( q ) ~ S ( t ) g ( ( )  

S( t ) g( i ) = lim S( t ) g( rl ) 
qE2 
,tTI 

where i is the configuration ( (x)  = 1, and we can define S(t)  g(O) similarly. 
Thus S ( t ) g  extends continuously to 0 and i for g E C ( X ) .  Set ~t(n)= 
Y'./+r=, + 1 (l ^ r)flU, r), and let ~ ( n ) =  m a x k ~ ,  ~(k). By basically the same 
arguments  as in Liggett, (8) if 

1 
~ - ~ < ~  (3.17) 
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then 60 and 6] are not invariant, while if 

,~, ~ n )  = oo (3.18) 

they are invariant. Thus iffl(/, r) satisfy (1.2) and (3.17), then by Theorem 1.4 
the renewal measure is the only translation-invariant, invariant measure, 
and the process is ergodic, while if fl(/, r) satisfy (1.2) and (3.18), then if no 
reversible (renewal) measure exists the only translation-invariant, invariant 
measures are of the form 260+ (1-, ; t)61,  where 2 � 9  [0, 1], 

4. WEAK LIMITS 

Throughout this section we will be assuming that the rates flU, r) 
satisfy the hypothesis of Theorem 1.4. When the rates are attractive we 
often extend the definition of a reversible measure by saying that any 
translation-invariant measure p is reversible if 

t" t" 
J c(x, ~) cl/4~) = J c(x, ~) d~(() 

{(: ({y)=  q(y) for 0~<3, ~<n} {(" ( ( ) )  =qx()  ) for 0<~y~<n} 

for all n/> 0, x e Z, and q �9 .t". (Note that with this definition the pointmasses 
on the identically zero and identically one configurations, 6o and 6t, are 
reversible.) We will use the free energy technique and draw from many of the 
results obtained in Section 3 to prove the following: 

Theorem 4.1. Assume that fl(l, r) satisfies (1.2), where Fis  positive, 
and that there exists a positive integer N such that fl(l, r) is monotone 
decreasing in l and r for l + r >~ N. Let/1 be a translation-invariant prob- 
ability measure on ~', and suppose that there exists a 6 > 0 such that 

I t{~l(O)=Ol~l(x)=Oforal lO<x<nandq(n)= 1} >/6 (4.2) 

and 

p{r l (O)=l l r l ( x )=l fora l lO<x<nandr l (n )=O}  >~6 (4.3) 

for all n >/1. Let {tk} be a sequence of nonnegative numbers such that 
tk--* o0. Suppose that 

v = lira/IS(tk) 
k 

Then if v concentrates on .$" or the rates are attractive, v must be a reversible 
measure. 
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We need a few proposit ions to obtain the proof of Theorem 4.1. Our  
first result uses subadditivity to show that lim.[H,,(p)/n] exists. We call 
this A(/t), the free energy of/ l .  

P r o p o s i t i o n  4.4.  Let p be a t ranslat ion-invariant  measure on X. 
Then 

lim H.(lz) _ A(I~) 
n ~ o o  n 

exists. Moreover. there exists a constant  c >  - o o  independent  of /z  such 
that 

A(a)>c 

Proof. The hard part  of the proof is in showing that if we add a 
constant  to 

1 
~. M.(r l )  log 

, l~ xo.. N.(r/) 

we get a subadditive sequence. We will start by showing that there exists 
a K < oo such that 

N.,(~.,) g ._  ,(~._ ~) 
~<K (4.5) 

N.,+.(rlm X ~l.- ] ) 

for all m, n~>l ,  where q..~Xo..., rl ._leXo.._~, and r l . ,xr l ._~Xo, . ,+.  
such that r/,. x r/. _ ~ = q,. on Zo,., and r/., x r/. _ ~ = r/. _ ~ on Z., + 1.., +. .  Set 
G(k) = ~'~=kg(l). AS in Liggett, (8) we have 

and 

G(n) y 
lira = < oo (4.6) 

.-oo g(n) 7 - 1  

�9 oo  G k  
,lun= - - ~  = \ - ~  ; <oo  (4.7) 

Case A. 

Then 

q., x ~/._ ~ is a configuration of the form 

kl k2 
r - - - - - - - " - - - - ~  

- . - 0 1 . . .  1 0 . . . 0 1 . . - ,  kl,k2>~l 
site m 

N m ( ~ , . ) N . _ ~ ( q . _ l )  G(k~) G(kz) 

N., +.(r/.. • r/,,_ 1) g(k])g(kz) 
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Case B. q., x rl._ i is a configuration of  the form 

Then 

k n 

�9 . . 0 1 - . . 1 0 - - -  0 , 
n l  m + n 

k~>l  

N,.(q.,) N,,-l(q.-l) G(kl) ~t>~k2 G(I) 
N.,+.(rl.,xrl._l) g(k,) G(k2) 

Case C. rim x q._ ~ is a configuration of the form 

Then 

m +  1 n 
, ~ . . ~ _ . ~  , ~ - - - ~ . ~ _ - - ~  

1- . .1  0 . - .  0 
m m + n 

N.,(~?.,)N,,_I(q._1) Zt>~.,+l G(I) Et>~,,G(I) 
N.,+,,(r/m x q . _ t )  G(m+ 1) G(n) 

Case D. r/., x q . _  ~ is a configuration of the form 

Then 

k I k 2  

�9 . . 1 0 . . . 0 0 . . . 0 1 . . - ,  
m 

kl, k2>/1 

Nm(rl.,) N._,(rl,,_l) G(kl) G(k2) 
D 

N.,+,,(q,,,xq,,_l) g(kl+k2) 

g(kt) g(k2) G(kl) G(k2) 

g(kt +k2)  g(kl)g(k2) 

~cfl(k t + 1, k2) 
G(kt) G(k2) 

g(kl)  g(k2) 

for some finite constant c, independent of  k~, m, and n. 

Case E. rr,,, x r/,,_, is a configuration of  the form 

�9 . . 1 0 . . . 0 0 . . .  0 , 
m m + n 

k~>l  
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Then 

Case F. 

Then 

N,.(q,,,)N,,_,(q._]) G(k) Zt>~,,G(l) 
N.,+.(q.,xrltl_l) 

m 

G(k + n) 

G(k) Zt>~,, G(I) <~ 
g(k + n) 

g(k) g(n) G(k) Et>~,, G(l) 
- g (k  + n) g(k)  g(n) 

<~ cfl(k + 1, n) G(k) ~t>~,, G(I) 
g(k) g(n) 

1/., x r/ ._ i is a configuration of the form 

m + I n 
, . . . . . . ~  , . - - - . . . -~ . . . -~  

0 . . - 0 0 - . -  0 
n! m + n 

N.,(q,,,)N.-1(tT.-I) ~t>~.,+l G(l) Zt<,, G(I) 
N,-+-(r/m x q - -  l) ~t>~, .+.+ I G(I) 

< Y.l>~.,+ l G(l) ]El>_.,, G(l) 
g (m+n+ 1) 

g(m + 1 ) g(n) Y'.t>~., + t G(l) ~l>_.. G(l) 
- g ( m + n + l )  g ( m +  1) g(n) 

Zt>~m+l G(l) Zl>>.. G(I) 
<~cfl(m+l,n+l g - ~  1) g(n) 

Thus (4.5) is a result of  (4.6) and (4.7). Now for m, n 1> 1 

1 1 
E M..+,,(q) E 

~Xo .... l~ N.,+n(q) ~m~Xo.,.M"(q") lOg N,,,(~7,,,) 

1 
- • M. - , ( r l . - , ) lOgN.  

l ( ~ n - -  1 )  q n _ i E X O ,  n _ l  

= 2  2 
? I m E X m  q n - l E X n - I  

<-Z 2 
q m E X m  q n -  I I~ X n -  1 

-<Z 2 
r]m E X m  r l n -  I ~ X n  - I 

N.,(q.,) N. _ ,(q,,_ l ) 

[ N.,(rl.,) N._,(~l._,) ] 

Mm+,,(q,.xq,,_~)[K-- 1] = K -  1 
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where the first inequality is a consequence of the fact that log(l/t)~< 
(l/t) - 1, for t > 0, which follows from the convexity of the function t log t. 
So if we set 

1 
S(n)= Z M, (~ / ) I~  

q e~ XO.n 

the sequence S(n) is subadditive. Thus 

lim 1 E M,(q) log 1 
,, n ~Xo.. N,,(~/) 

exists. By a similar argument (see Ruelle, (~) pp. 178-181, for example) 

lim 1 ~ M.(q) log M,,(q) 
n r t  q~Xo, n 

also exists. Notice that if ~-~-k~> 1 G(k)<<. 1 

1 1 
- Z M,,(q) l~ 
n ,~ e xo., 

while if ~k~> l G(k) > 1, 

Also, 

1 1 > 1  / 1 
M,,(q) log ~] M,,(r/)log ( ,E,.>:-, O(k)/ 

=log (.  -O(ki) 
1 1 
- ~ M,,(r/) log M,(rl) --+ sup - 
11 q e Xo, , ,  n n q e Xo, n 

M,,(q) log M,(r/) 

by subadditivity (see Ruelle/~1) p. 180). So 

l i m l ' Z  M,,(rl) log M,,(q) >~ Z 
n n 

q ~ X O ,  n q ~ X O . I  

.q e X'o.i 

Ml(rl) log Ml(q) 

[ M , ( q ) -  1] = 1 - 4  
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Thus 

A(/~) = lim 1 ~. M. (q)  log M.O1) + lim I ~ M.(~/) log N ~ / )  
n n q E X o . ,  n 1l q e X o . n  

is a well-defined expression, and is bounded below independent of  a.  | 

In the proposi t ion below we use the fact that  the derivative of  H.(/~,) 
can be written as a sum of terms C~,(x, q) over (x, q) ~ B. minus a sum of 

1 t terms ~D,,(x) over x E Zo.,,. 

P r o p o s i t i o n  4.8.  Let /t be a translat ion-invariant  measure  on .~" 
which is symmetric  in zeros and ones, and such that  there exists a 3 > 0 so 
that  

a{r/:  q(O)=OIq(x)=OonZ~ .... ~ and q(n) = 1} > 6  

for all n ~> 1. Then for any 0 ~< t~ < t 2 

A(/u,.)- A(12,) <~ f,z H(I.t,) dt 

where H ~< 0 is an upper  semicontinuous function. 

Proof. We note that  by Lemma  3.1 we have 

dIr X 
dt 

( x : t )  �9 Bn 
C~,(x, ~1) --2xl ~=o D.(x) 

for all t i> 0. Also, by Corollary 3.14 

1 
l imsup  sup - ~ C[,(x,q)<.O 

n t ~ [ t h t 2 ]  n ( x , q ) ~ B n  

So 

H,,(/~,2 ) H.(/z,, ) 
lim 

/ '/ n ~  oo r /  
A(/~,2) - A(/z,,) = lim 

H,(Iz,,) -- n,,(It,,) 
- lim 

n ~  ~ n 

= lim ~,2 1 dH.(a,)dt 

,2 1 C~,(x, q) d t -  t2 D~,(x) dt 
= ,,~lim~_ n ~. B,, , 2n,. =o / 
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~ < l i m s u p |  - Z C:,(x ,q)dt- l iminf  , ~n 
,1 J t l  n ( x , q ) ~ B n  x = 0  

h '! . ~ 1 
~<-hminf f  - -  Z D'.(x)dt 

,, 3,, 2n x=o 

~< - h m  m f - -  ~ D'.(x) dt 
, ,, 2n x = o 

= lim,sup - ~n x=o 

Note  that  D.(x)>~ 0 for n/> 0 and x ~ Zo,,,. As observed in Liggett, ~8~ 

D.,(x) <~ D.(x) 

for m ~< n and x ~ Zo, m. NOW, for n >~ 0, set 

S(n + 1)= ~ D,,(x) 
x = O  

Then for m, n ~> 0, by using translation invariance, we get 

S(m+ 1) + S ( n  + 1) = ~ D.,(x) + ~ D.(x) 
x ~ O  x ~ O  

r n + n + 2  

<~ Z O~ Z D,,,+,,+,(x) 
x = 0  . x - = m +  1 

m + n + 2 

= ~ D, .+.+2(x)=S(m+n+2) 
x = 0  

So for n/> 1 the sequence S(n) is superadditive. Thus 

l i m , s u p - 1  ~ . - 1  " - 1  ~ -~n D,,(x) = hm - -  ~ D.(x) = inf D.(x) 
x=o ,, 2n x=O n x=o 

which is the infimum of a sequence of upper  semicontinuous functions. 
Hence 

H = lim,sup ~ -  1 ~ D. (x )  
x = 0  

is upper  semicontinuous. II 

Let 9t denote the set of all reversible measures (where the definition 
has been extended to include 6o and 6~). It  follows as in Section 3 that for 
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any translation-invariant measure /1, i f /~r  then H ( / I ) < 0 .  The next 
proposition can be proved using Proposit ion 4.8 in basically the same way 
that Theorem 3.15 is proven in ref. 7. 

Proposition 4.9.  Let v be a translation-invariant measure such 
that v (~ ' )=  1 if the rates are not attractive, and suppose that vr 9~. Then 
there exists a weakly open set Gv containing v and e, g > 0 such that if/~ 
satisfies the conditions of  Proposit ion 4.8 and /z ,  ~ G,,  then 

A(/~, +~) - n (~ , )  ~ -dis 

for all O<~s<~e. 

Proof of Theorem 4.7. Let /z  be a translation-invariant measure on 
~" which is symmetric in zeros and ones and satisfies (4.2). Suppose that 
t,, ~ ~ and /~ , ,~  v, where v ( ~ ) =  1 if the rates are not attractive. Then 
A(/l,,) is a convergent sequence by Proposit ions 4.4 and 4.8. Thus v must 
be reversible by Proposit ion 4.9. The case of a measure/~ which is not  sym- 
metric in zeros and ones can be treated by considering the measure/~ which 
we get by applying/~ to configurations with zeros and ones interchanged. 
The ergodicity of  the symmetric renewal measure is used much the same as 
in the proof  of  Theorem 1.4. II 

From now on we will assume that the rates are attractive [fl(l, r) is 
monotone  decreasing in l and r]  in addition to (1.2) to obtain some 
applications of  Theorem 4.1. An immediate consequence of  the theorem is 
the following: 

Corollary 4.10. Assume that fl(/, r) is monotone  decreasing in 1 
and r and satisfies (1.2). Suppose that no symmetric renewal measure exists 
for the rates ft. Then if p is any translation-invariant probability measure 
on )7 which is symmetric in zeros and ones and satisfies (4.2), 

~ s ( t )  ~ �89 + �89 

At this point we consider rates of  a form for which a symmetric 
renewal measure exists. Let F be as in (1.2) and suppose that there exists 
a 0 > 0 such that 

, <  i F(2/ 
, =, L P(--]-~, 1~ J F ( k +  l) <c~ (4.11) 

Then by attractiveness and the ratio test 

F(k+ l) 
*y>~l 

OF(k) 
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Hence, we can choose 0o < 0 so that  

and 

i <  [ F( 2 > l 'P- of 
k=, LB(-~,DJ F ( k + l )  

F ( k +  l) 
OoF(k) ~ 7o> I 

- - < 0 0  

As shown in Chapter  6 of  ref. 5, we can then construct a transient finite 
symmetric nearest-particle system (start the process with a finite number  of  
ones) by setting fl(k, ~ )=O~/F(k ) .  If, in addition, we assume that  
sup , ,~ l+r=, f l ( I , r )<oo ,  as in Sect ion2 of Mountford,  (~~ we can show 
that  if p is a translat ion-invariant  measure  on ..~ and/2 , ,  ~ v as t ,  ~ ~ ,  
then v must  concentrate on ,~. Thus,  using Theorem 4.1, we get the follow- 
ing result. 

Corollary 4.12.  Assume that  fl(l, r) is mono tone  decreasing in l 
and r and satisfies (1.2). Suppose that  sup,, ~l+~=, ,  fl(l, r) < ~ and there 
exists a 8 > 0  so that  (4.11) holds for F a s  in (1.2). Then i f p  is any transla- 
t ion-invariant measure on 2" which satisfies (4.2) and (4.3), we have 

#S(t )  ---, #p 

where/.tp is the symmetric  renewal measure determined by the rates fl(l, r). 
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